首页> 资源> 论文>正文

高级氧化法的特性及其应用

论文类型 技术与工程 发表日期 2002-05-01
来源 《中国给水排水》2002年第5期
作者 孙贤波,赵庆祥,曹国民,周军
关键词 高级氧化法 水处理 难降解有机物
摘要 介绍了一种新型化学氧化法—高级氧化法(AOP)定义及氧化机理,它具有氧化能力强、反应无选择性、氧化彻底等独特的优点,并已在国外有实际应用。

孙贤波, 赵庆祥,曹国民, 周军
(华东理工大学环境工程系,上海 200237)

  摘 要:介绍了一种新型化学氧化法—高级氧化法(AOP)定义及氧化机理,它具有氧化能力强、反应无选择性、氧化彻底等独特的优点,并已在国外有实际应用。?
  关键词:高级氧化法;水处理;难降解有机物
  中图分类号:X703.1
  文献标识码:B
  文章编号:1000-4602(2002)05-0033-03

   目前水质污染的主要矛盾已从耗氧物质和生物污染转化为化学物质污染,因此美国国家研究委员会(NRC)在制定21世纪优先研究领域时把《环境中的化学品》列为今后20年应加以资助的六个重点领域之一。我国从2000年1月1日起执行新的地表水环境质量标准(GHZB1—1999),其中控制地表水I、II、III类水域有机化合物为目的的特定项目有40项。
  目前废水处理最常用的生物法对可生化性差、相对分子质量从几千到几万的物质处理较困难,而化学氧化法可将其直接矿化或通过氧化提高污染物的可生化性,同时还在环境类激素等微量有害化学物质的处理方面具有很大的优势。然而O3、H2O2和Cl2等氧化剂的氧 化能力不强且有选择性氧化等缺点,难以满足要求。1987年Glaze等人提出了高级氧化法(A dvanced oxidation processes,简称AOP),它克服了普通氧化法存在的问题,并以其独特的优点愈来愈引起重视。

1 氧化有机物的机理

  Glaze等人将水处理过程中以羟基自由基作为主要氧化剂的氧化过程称为AOPs过程,用于水处理则称为AOP法。典型的均相AOPs过程有O3/UV、O3/H2O2、UV/ H2O2、H2O2/Fe2+(Fenton试剂)等,在高pH值情况下的臭氧处理也可以被认为是一种AOPs过程,另外某些光催化氧化也是一个AOPs过程[1]
  高级氧化法最显著的特点是以羟基自由基为主要氧化剂与有机物发生反应[2],反应中生成的有机自由基可以继续参加·OH的链式反应,或者通过生成有机过氧化物自由基后,进一步发生氧化分解反应直至降解为最终产物CO2和H2O,从而达到了氧化分解有机物的目的。?

2  AOP法的特点

2.1 氧化能力强
  表1为各种氧化剂的氧化电位,可见羟基自由基是一种极强的化学氧化剂,它的氧化电位比普通氧化剂(如臭氧、氯气、过氧化氢)高得多,这意味着·OH的氧化能力要大大高于普通化学氧化剂。

表1 各种氧化剂的氧化电位[2]? 氧化剂 半反应 氧化电位(V) ·OH ·OH+H++e→H2O 3.06 O3 O3+2H++2e→O2+H2O 2.07 H2O2 H2O2+2H++2e→2H2O 1.77 HClO 2HClO+2H++2e→2Cl-+2H2O 1.63 Cl2 Cl2+2e→2Cl-

1.358

     

2.2 选择性小、反应速度快
  表2中列举了水中常见的有机污染物同O3和·OH的反应速率常数。由表2可见,O3对不同的有机物质的氧化速度相差很大,相同条件下与涕灭威的反应速率常数要比林丹高6个数量级以上,这样当使用臭氧处理含这两种有机物的废水时,O3会优先与反应速度快的物质进行反应,而另外一种物质则无法达到处理的目的。·OH与不同有机物质的反应速率常数相差很小,表明羟基自由基是一种选择性很小的氧化剂,当水中存在多种污染物质时,不会出现一种物质得到降解而另一种则基本不变的情况。

表2 常见有机污染物与O3和·OH的反应速率常数[2、3] 有害化学物质 O3的反应速率常数(mol-1·L·s-1) ·OH的反应速率常数(mol-1·L·s-1) 林丹 0.04 (2.7~170)×108 涕灭威 4.4×104 8.1×109 阿特拉津 7.9 2.4×109 氯苯 0.06~3 (4~5)×109 PCB <0.9 (4.3~8)×109

  同普通化学氧化法相比,AOP法的反应速度很快。如表2中的数据所示,·OH对含C—H或者C—C键有机物质的反应速率都相当快,一般其反应速率常数>109mol-1·L·s-1,基本接近扩散速率控制的极限(1010mol-1·L·s-1),表明此时氧化反应速度是由·OH的产生速度来决定的,因此用AOP法处理有机物时,在很短的时间内便可以达到处理要求,如以H2O2/O3处理阿特拉津农药废水时,10min内便可以达到90%以上的去除率。?
2.3 处理效率高
  普通化学氧化法由于氧化能力差、反应有选择性等原因,往往不能直接达到完全去除有机物、降低TOC和COD的目的。
  AOP法则基本不存在这个问题,氧化过程中的中间产物均可以继续同羟基自由基反应,直至最后被完全氧化成CO2和H2O,从而达到了彻底去除TOC和COD的目的。如使用O3/超声波对于人工合成棕黄酸溶液进行处理时,对TOC去除率达到了90%以上[4]。表3中列举的应用实例也可证明这一点。

表3 高级氧化法的应用研究实例[7~10]? AOPs 处理对象 处理效果 AOPs 处理对象 处理效果 UV/O3 制药废水 COD 680→400 mg/L
AOX 3→1 mg/L ZrO2/Fe3+/UV/H2O2 PVA TOC去除率为95.6% DBS TOC 20.5→2.0 mg/L 聚乙烯醇 TOC去除率为61.3% 苯酚 TOC 28.1→1.8 mg/L 腐殖酸 TOC去除率为84.3% 乙烯醇 TOC 18.0→1.5 mg/L LAS TOC去除率为72.6% 阳离子交换树脂洗涤水 TOC 15.2-0.6 mg/L 石油贮槽清洗水 TOC去除率为93.2% 阳离子交换树脂老化洗涤水 TOC 21.6→0.6 mg/L 固体废物填埋渗滤液 TOC去除率为40.6% 阿特拉津 30min 10→1mg/L UV/TiO2 纤维工业废液 20~30 min分解成CO2 H2O2/O3 氯苯类 40→20.5μg/L UV/H2O2/O3 BOD=0 mg/L的废水 处理60min?
BOD/COD 0→0.4 二噁英 6 500→3 000 pg/L H2O2/O3 氯丁烷 分解率为93% 阿特拉津 10 min内去除91% UV/TiO2 偶氮染料Rema201, BlackB 偶氮染料300→0 μmol/L TOC 2633→7μmol/L

2.4 有效减少THMs生成量
   对含有机物的水进行氯消毒时产生的三卤代甲烷类副产物(THMs)被公认为致癌和致畸物质,而腐殖酸和棕黄酸被认为是天然水中卤素的主要吸收者,它们在最后的氯化过程中将会导致THMs副产物的生成。
  普通化学氧化剂(如臭氧)虽然可以将这些大分子的有机物氧化分解成小分子的有机物,从而部分减少THMs产生的可能性(THMFP)[7],但难以达到完全消除;另外如果水中含有溴化物时,臭氧处理含棕黄酸的水时将会导致溴代有机化合物(一种重要的致癌物质)的生成。[6]
  AOP法则可以有效地减少THMs的生成,它可将有机物质(THMs前体物)彻底氧化成二氧化碳和水,另外当水中存在THMs时,AOP法也可以部分消除这些物质,同时也可以有效地减少溴代 有机化合物的生成[11、12]

3  应用概况

  AOP法的应用如表3所示。这些研究结果表明AOP法对于微量有害难降解化学物质的处理具有其他方法无法比拟的显著效果,发展前景广阔。?
  虽然AOP法还存在着许多问题,如处理成本较高、碳酸根离子及悬浮固体对反应有干扰等,但因其具有独特的优点而受到各国的广泛重视,并在一定范围内投入应用。美国密执安州从1994年开始将其用于处理受有机氯化物污染的地下水,Mont-Valerien水处理 厂采用了O3/UV氧化处理来自Seine River原水中的阿特拉津,在南加州建造了世界上最大的H2O2/O3法净水设施,于2000年正式运行;在法国已经将O3/H2O2过程同活性炭过滤相结合应用于水处理厂中;英国、荷兰等国为了去除和分解水中的有机氯,准备在普通净水厂中增加H2O2/O3净水设施;德国、澳大利亚、法国和荷兰已采用O3/UV和H2O2/O3法来处理垃圾填埋渗滤液。

4  结语

  AOP法同传统的化学氧化法相比,具有氧化能力强、氧化过程无选择性、反应彻底等优点,对含微量难降解有机物废水的处理具有极大的应用价值。但对如何进一步提高其处理效率、降低处理成本以及消除各种不利因素(如碳酸盐等)对其影响等问题还需要在今后作进一步研究。

参考文献:

  [1]Susan J Masten,Simon H R Davies.There are more than 40 municipal wastewater treatment plants in the united states that have ozonation facilities[J].Environ Sci Technol,1994,28(2):181A-185A.
  [2]Yao C C,Haag W R.Rate constants for direct reaction of ozone with several drinking water contaminates[J].Wat Res,1991,25(4):761-773.
  [3]Haag W R,Yao C C.Rate constants for reaction of hydroxyl radicals with several drinking water contaminants[J].Environ Sci Technol,1992,2 6(5):1005-1013.
  [4] Olson T M,Barbier P F.Oxidation kinetics of natural organic matter by sonolysis and ozone[J].Wat Res,1994,28(6):1383-1391.
  [5]Amy G L,Tan L,Davis M K.The effects of ozonation and activated car bon adorption on trihalomethane speciation[J].Wat Res,1991,25(2):191-202.
  [6]Xie Y,Reckhow D A.Identification of trihaloacetaldehydes in ozonated and chlorinated fulvic acid solutions[J].Analyst,1993,118(1):71-72.
  [7] Clasus Hofl,Gerhard Sigl,Oliver Specht,?et al?.Oxidation degrada tion of AOC COD by different advanced oxidation processes:A comparative study with two samples of a pharmaceutical wastewater[J].Wat Sci Technol,1997,35(4):257-264.
  [8] Antonio Marco,Santiago Esplugas,Gabriele Saum.How and why combine chemical and biological processes for wastewater treatment[J ].?Wat?Sci Technol,?1997,35?(4):321-327.
  [9]Jurg Hoigne.Inter-calibration of OH radical sources and water quality parameters[J].Wat Sci Technol,1997,35(1):1-8.
  [10]Vinodgopal K, Peller Tulie,Oksana Markogon,?et al.Ultrasonic miveralization of a reactive textile azo dyes Remazol black B[J].Water Research ,1998,32(12):3646-3650.
  [11]Duguet J P,Brodard E Dussert B,?et al.Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide[J ].Ozone Sci Engng,1995,7(2):241-258.
  [12]Miller S.Disinfection products in water treatment[J].Environ Sc i Technol,1993,27(12):2292-2294.


  电 话:(021)64252395?
  E-mail:[email protected]
  收稿日期:2001-09-12

论文搜索

发表时间

论文投稿

很多时候您的文章总是无缘变成铅字。研究做到关键时,试验有了起色时,是不是想和同行探讨一下,工作中有了心得,您是不是很想与人分享,那么不要只是默默工作了,写下来吧!投稿时,请以附件形式发至 [email protected] ,请注明论文投稿。一旦采用,我们会为您增加100枚金币。